Polynomial selection in number field sieve for integer factorization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On polynomial selection for the general number field sieve

The general number field sieve (GNFS) is the asymptotically fastest algorithm for factoring large integers. Its runtime depends on a good choice of a polynomial pair. In this article we present an improvement of the polynomial selection method of Montgomery and Murphy which has been used in recent GNFS records. 1. The polynomial selection method of Montgomery and Murphy In this section we brief...

متن کامل

Montgomery's method of polynomial selection for the number field sieve

The number field sieve is the most efficient known algorithm for factoring large integers that are free of small prime factors. For the polynomial selection stage of the algorithm, Montgomery proposed a method of generating polynomials which relies on the construction of small modular geometric progressions. Montgomery’s method is analysed in this paper and the existence of suitable geometric p...

متن کامل

Non-linear polynomial selection for the number field sieve

We present an algorithm to find two non-linear polynomials for the Number Field Sieve integer factorization method. This algorithm extends Montgomery’s “two quadratics” method; for degree 3, it gives two skewed polynomials with resultant O(N5/4), which improves on Williams O(N4/3) result [12].

متن کامل

A Kilobit Special Number Field Sieve Factorization

We describe how we reached a new factoring milestone by completing the first special number field sieve factorization of a number having more than 1024 bits, namely the Mersenne number 2 − 1. Although this factorization is orders of magnitude ‘easier’ than a factorization of a 1024-bit RSA modulus is believed to be, the methods we used to obtain our result shed new light on the feasibility of t...

متن کامل

Space Complexity Analysis of Sieving in the Number Field Sieve Integer Factorization

The general number sieve is the most efficient algorithm known integer factorization, it consists of polynomial selection, sieving, solving equations and finding square roots. In this paper, the p adic − evaluation provided by each root and the expected p − value are given, then we get the space complexity of sieving over the ring / 2 � � . Introduction In 1976, Diffie and Hellman published the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Perspectives in Science

سال: 2016

ISSN: 2213-0209

DOI: 10.1016/j.pisc.2016.04.007